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Fig. 3 Simulation results by modi� ed AWC with b = 1.0.

in the control parameters. With this in mind, the preceding AWC
is modi� ed so that the modi� ed AWC protects the integrator from
being a large negative value in the initial control phase by limiting
the PD terms of the compensator output for the AW feedback. In
other words, if we let ±p1 and ±p2 represent the PD and integral
terms of the compensator output, respectively, the controller takes
the saturated values of ±p1 and ±p2 as the AW feedback signal. The
modi� ed AWC approach is constructed as

f D .1=Tt / min.±p1; H / ¡ uw
p C ±p2 (9)

where H is the saturated value of ±p1 , which limits the combination
of proportional and derivative terms of the compensator output. A
ratio of the saturated value of the actuator to H determines the
modi� cation quantities in the modi� ed AWC

r D Hact=H (10)

where Hact is the saturated values of the actuator, which is 22 deg
for S-19. The attitude control performanceof this modi� ed AWC is
presented in Fig. 3. It represents a case when the modi� ed AWC is
applied to the typical AWC with a large value of AW gain b. This
case also correspondsto the slow response,as was discussedearlier.
Note that the response characteristic has improved signi� cantly.
The change in the control system performance is not very large
considering the same range of variation of r as in the AW gain of
Fig. 1. These resultsprove thedesirableperformanceof the modi� ed
AWC for the case of slow dynamic responses. It also shows that
the modi� ed AWC is not that sensitive to changes of the control
parameter r . On the other hand, as the parameter r increases, the
stability margin of the control system reduces gradually. However,
closed-loop stability is guaranteed with the modi� ed AWC if the
original PID controller is stable.

Conclusions
Design of a typical and a modi� ed AWC in the presence of actu-

ator saturation of KSR-II is investigated. The control performance
of the typical AWC turned out to be rather sensitive to the AW gain
with slower response characteristics for a large AW gain. This has
been partially resolved by introducing a modi� ed AWC. The mod-
i� ed AWC improved the slow response considerably, even with a
large AW gain. This modi� ed AWC showed less sensitivity to the
control gains compared with the typical AWC.
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I. Introduction

P REVIOUS studies have demonstrated that families of arti� cial
Lagrangepointsmay be generatedusing solarsail spacecraft.1;2

However, these studies assumed an idealized solar sail with perfect
re� ectivity.This Notewill reexaminetheproblemwith a partiallyre-
� ectingsolar sail because a real aluminizedsail � lm would typically
have a re� ectivity on the order of 0.9. First, equilibrium solutions
will be obtained for an ideal � at solar sail. Then the problem will be
revisited with a partially re� ecting solar sail. Apart from reducing
the magnitude of the radiation pressure force exerted on the solar
sail, the � nite absorption of the sail means that the radiation pres-
sure force vector is no longer directed normal to the sail surface.
Because of this effect, it will be shown that the volume of space
available for arti� cial Lagrange points is extremely sensitive to the
solar sail re� ectivity.These arti� cial Lagrange points are of interest
for a number of mission applications.3¡5

II. Equilibrium Solutions for an Ideal Flat Solar Sail
First equilibrium solutions for an idealized, perfectly re� ecting

� at solar sail will be generated. We will not consider compound
solar sails such as the solar photon thruster concept of Forward.6

The ideal sail will be considered in a frame of reference corotat-
ing with two primary masses m1 (Sun) and m2 (Earth or another
planet) at constant angular velocity !, as shown in Fig. 1. The sail
attitude is de� ned by a unit vector n normal to the sail surface, � xed
in the rotating frame of reference. In addition, the ratio of the so-
lar radiation pressure force to the solar gravitational force exerted
on the sail is de� ned by the sail lightness number ¯ . Because both
forces have an inverse square variation with solar distance, the sail
lightness number is a constant. It can be shown that the sail light-
ness number is related to the total solar sail mass per unit area by
¾ .g m¡2/ D 1:53=¯ . The units of the problem will be chosen such
that the gravitationalconstant, the distancebetween the two primary
masses, and the sum of the primary masses are all taken to be unity.

The vector equation of motion for a solar sail in this rotating
frame of reference may be written in standard form as

d2r
dt 2

C 2! £
dr
dt

C rU D a (1)

where the three-body gravitational potential U and the solar radia-
tion pressure acceleration a are de� ned by

U D ¡ 1
2 .x2 C y2/ C [.1 ¡ ¹/=r1] C .¹=r2/ (2a)

a D ¯ .1 ¡ ¹/ r 2
1 .Or1 ¢ n/2n (2b)
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Fig. 1 Sun–Earth restricted three-body problem with a partially re-
� ecting solar sail.

Fig. 2 Contours of sail lightness numbers in the x–z plane with ´ = 1.
Contours: 1—0.02, 2—0.04, 3—0.06, and 4—0.1.

where ¹ D m2=.m1 C m2 ) is the mass ratio of the system and the
sail position vectors are de� ned as r1 D .x C ¹; y; z/ and r2 D [x ¡
.1 ¡ ¹/; y; z].

Equilibrium solutions are now required in the rotating frame of
reference so that the � rst two terms of Eq. (1) vanish. The � ve
classicalLagrangepointsare then de� nedas the solutionsto rU D 0
with Or1 ¢ n D 0, and so a D 0. However, for Or1 ¢ n 0 there is an
additional acceleration a that is a function of the lightness number
¯ and attitude n so that new arti� cial equilibrium solutions may be
generated.Because the vectora is oriented in direction n, taking the
vector product of n with Eq. (1) it follows that

rU £ n D 0 ) n D ¸rU (3)

where ¸ is an arbitrary scalar multiplier. Using the normalization
condition jnj D 1; ¸ is identi� ed jrU j¡1 so that the required sail
attitude is de� ned by

n D rU=jrU j (4)

The required sail lightness number may also be obtained by taking
a scalar product of Eq. (1) with n. Again requiring an equilibrium
solution it is found that

¯ D
r 2

1

.1 ¡ ¹/

rU ¢ n
.Or1 ¢ n/2

(5)

Because the sail lightness number and attitude can in principle
be freely chosen, the set of � ve classical Lagrange points will

be replaced by an in� nite set of arti� cially generated equilibrium
solutions.

The regions in which these new solutions may exist are de� ned
by the constraint Or1 ¢ rU ¸ 0 with a boundary surface de� ned by an
equality. This constraintmay be understood physically because the
solar radiation pressure acceleration vector a, and so the sail atti-
tude vector n, can never be directed sunward. The boundary surface
has two topologically disconnected surfaces S1 and S2 that de� ne
the region of existence of equilibrium solutions near m2, as shown
in Fig. 2. The classical equilibrium solutions lie on either S1 or S2

because they are the solutions to rU D 0. In general, the surfacesof
constant sail lightness number approach these boundaries asymp-
totically with ¯ ! 1 when Or1 ¢ rU ! 0 as is clear from Eq. (5).
Surfaces of constant sail lightness number generated from Eq. (5)
for the Earth–Sun system are shown in Fig. 2. It can be seen that
as the sail lightness number increases larger volumes of space are
accessible for arti� cial equilibrium points.

III. Equilibrium Solutions for a Partially
Re� ecting Flat Solar Sail

A realistic � at solar sail force model that includesabsorptionwill
now be considered. To allow a closed-form solution, the solar sail
will be assumed to have perfect specular re� ectivity and no thermal
reemissionbut will still have an overall re� ectivity´ less than unity.
Then the radiation pressure acceleration will act in direction m and
may be written as the sum of components normal n and transverse
t to the sail surface7:

am D 1
2 ¯ ¹ r 2

1 .1 C ´/.Or1 ¢ n/2n

C 1
2
¯ ¹ r 2

1 .1 ¡ ´/.Or1 ¢ n/.Or1 ¢ t/t (6)

It can be seen that the main effect of the nonperfect re� ectivity of
the sail is to reduce the acceleration magnitude and to introduce an
offset in the direction of the radiation pressure acceleration. The
acceleration now acts in direction m rather than normal to the sail
surface in direction n. This offset is de� ned by the centerline angle
Á with the actual radiation pressure force direction de� ned by the
cone angle µ , as shown in Fig. 1.

The analysis presented in the previous section will be repeated
using the sail force model de� ned by Eq. (6) so that the equation of
motion may now be written as

d2r
dt 2

C 2! £ dr
dt

C rU D am (7)

For an equilibrium solution the � rst two terms of Eq. (7) will again
vanish so that the sail attitude must be chosen as

m D rU=jrU j (8)

The unit vector m can now be de� ned by the cone angle µ between
the radial direction Or1 and m as

tanµ D
jOr1 £ rU j

Or1 ¢ rU
(9)

In addition, using Eq. (6) the centerline angle can be obtained from
the ratio of the transverse and normal accelerationsas

tan Á D [.1 ¡ ´/=.1 C ´/] tan ® (10)

Noting that n ¢ t D 0 and taking a scalar product of Eq. (7) with the
unit vector n gives the required sail lightness number as

¯ D
2r 2

1

¹

rU ¢ n
.1 C ´/.Or1 ¢ n/2

(11)

The centerline angle may be obtained explicitly by noting that
® D µ C Á. Then, after some reduction,Eq. (10) yields the centerline
angle directly from the cone angle as7

tan Á D ´

.1 C ´/ tan µ
1 ¡ 1 ¡ 1 ¡ ´2

´2
tan2 µ

1
2

(12)
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Fig. 3 Contours of sail lightness numbers in the x–z plane with ´ = 0.9.
Contours: 1—0.02, 2—0.04, 3—0.06, and 4—0.1.

Lastly, using Eq. (11), it is found that the required sail lightness
number may be obtained in terms of the lightness number for an
ideal solar sail Q̄ as

¯ D
2

.1 C ´/

1 C tan2 Á

.1 ¡ tan µ tan Á/2
Q̄ (13)

where Q̄ is de� ned by Eq. (5). Therefore, using Eqs. (9), (12), and
(13), one can obtain the sail orientation and lightness number re-
quired for an equilibrium solution.

The effect of a nonideal � at solar sail is shown in Fig. 3 for a re-
� ectivityof 0.9, typicalof an aluminizedsail � lm. First it can be seen
that the volume of space available for equilibrium solutions about
L2 is signi� cantly reduced.This is due to the centerlineangle,which
limits the direction in which the radiation pressure force vector can
be oriented. For solutions near L1 the main effect of the nonideal
sail is to displace the equilibrium solutions toward Earth. This is
due to the reduction in the magnitudeof the radiation pressure force
rather than the centerline angle.

IV. Conclusions
It has been shown that a partially re� ecting solar sail can be used

to generate arti� cial Lagrange points in Sun–planet three-bodysys-
tems. However, the nonperfect re� ectivity of the solar sail can have
a signi� cant effect on the volume of space in which such equilib-
rium solutions are possible. The main reason for the sensitivity of
the problem to the sail re� ectivity is the centerline angle, which
limits the direction in which the radiation pressure force vector can
be oriented.
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Introduction

T HE scanning horizon sensor is widely utilized in the Earth-
pointing satellite to estimate its attitude with respect to the

local vertical, i.e., roll and pitch angles. It typically uses an infrared
detector together with a pencil beam to sense the abrupt change in
the infrared radiation intensity as the beam sweeps from cold space
across the horizon. The beam scans the horizon either by using an
internal mechanism (such as an oscillating mirror, a motor-driven
rotatingre� ectiveor refractiveoptic, etc.) or by mounting the sensor
on a bias momentum wheel. Although the scan mechanisms are
different, the operating principle of the scanning horizon sensors
can be generally described as follows: The � eld of view (FOV) of
the infrareddetectordiverts from the spin axis at a speci� c angle and
traces out a cone (or part of a cone) as the sensor scans. The rising
pulse and the falling pulse are generated as the Earth’s horizon is
encounteredgoing from cold space, across the Earth, and then back
into cold space.Given the � xed sensor reference,the phaseanglesof
the horizoncrossingpoints, which de� ne the geometric intersection
of the scan cone with the Earth, can be measured from the timing of
the pulses,and the roll and pitch anglesof the satellite are estimated.
Becausethe Earth is not an exactsphere,but approximatelyanoblate
spheroid relative to the polar axis, the Earth oblateness must be
corrected in the attitude estimation, or an attitude error will remain.
Several authors (e.g., Ref. 1 and the references therein) have studied
the impact of the Earth oblateness on the attitude errors, but most
of results have been scattered in the open literature and internal
technical documents.

In this Note a simple algorithm is presented to correct the scan-
ning horizon sensor measurement for the Earth oblateness in the
satelliteattitudeestimation.Compared with the methoddescribedin
Ref. 2, the problem is transferred from solving a three-dimensional
vector equation of the horizon crossing vector to solving a scalar
equation of the phase angle of the horizon crossing point, and the
algorithm is simpli� ed. Considering that the � attening coef� cient
of the oblate Earth is small, a � rst-order correction algorithm is also
derived,which achievesrelativelyhigh accuracywith much simpler
computation.

Reference Frames
De� ne several reference frames as follow: 1) the geocentric-

equatorial inertial frame OI ¡ XI YI ZI , where OI is the center of
the Earth, XI points in the vernal equinoxdirection, ZI points to the
North Pole, and YI completes the right-handed triad; 2) the satel-
lite body frame OB ¡ XB YB ZB , where OB is the mass center of the
satellite, and XB , YB , and ZB are the body-� xed roll, pitch, and yaw
axes, respectively;3) thehorizonsensorframe OB ¡ XSYSZS , where
XS is opposite to the sensor spin axis, ZS is orthogonal to the spin
axis, the � xed sensor reference is in the plane OB ¡ ZSXS , and YS

completes the right-handedtriad; and 4) the auxiliary measurement
frame OB ¡ XAYAZA , which is de� ned by the sensor spin axis and
the satellite position vector r pointing from OI to OB as XA D XS ,
YA D .XA £ r0/=jXA £ r0j, and ZA D XA £ YA, where r0 is the unit
vectorof r. Figure 1 illustrates the geometry of the reference frames.
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