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Fig.3 Simulation results by modified AWC with b = 1.0.

in the control parameters. With this in mind, the preceding AWC
is modified so that the modified AWC protects the integrator from
being a large negative value in the initial control phase by limiting
the PD terms of the compensator output for the AW feedback. In
other words, if we let §,, and §,, represent the PD and integral
terms of the compensator output, respectively, the controller takes
the saturated values of §,; and §,, as the AW feedback signal. The
modified AWC approach is constructed as

f=/T)[ min(8,1, H) — u +6,2] ©)

where H is the saturated value of §,,, which limits the combination
of proportional and derivative terms of the compensator output. A
ratio of the saturated value of the actuator to H determines the
modification quantities in the modified AWC

r=H,/H (10)

where H, is the saturated values of the actuator, which is 22 deg
for S-19. The attitude control performance of this modified AWC is
presentedin Fig. 3. It represents a case when the modified AWC is
applied to the typical AWC with a large value of AW gain b. This
case also correspondsto the slow response, as was discussed earlier.
Note that the response characteristic has improved significantly.
The change in the control system performance is not very large
considering the same range of variation of r as in the AW gain of
Fig. 1. These results prove the desirable performanceof the modified
AWC for the case of slow dynamic responses. It also shows that
the modified AWC is not that sensitive to changes of the control
parameter r. On the other hand, as the parameter r increases, the
stability margin of the control system reduces gradually. However,
closed-loop stability is guaranteed with the modified AWC if the
original PID controlleris stable.

Conclusions

Design of a typical and a modified AWC in the presence of actu-
ator saturation of KSR-II is investigated. The control performance
of the typical AWC turned out to be rather sensitive to the AW gain
with slower response characteristics for a large AW gain. This has
been partially resolved by introducing a modified AWC. The mod-
ified AWC improved the slow response considerably, even with a
large AW gain. This modified AWC showed less sensitivity to the
control gains compared with the typical AWC.
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Artificial Lagrange Points
for a Partially Reflecting
Flat Solar Sail

Colin R. McInnes*
University of Glasgow,
Glasgow, Scotland G12 8QQ, United Kingdom

I. Introduction

REVIOUS studies have demonstrated that families of artificial

Lagrangepoints may be generatedusing solar sail spacecraft.! 2
However, these studies assumed an idealized solar sail with perfect
reflectivity. This Note will reexamine the problemwith a partiallyre-
flecting solar sail because a real aluminizedsail film would typically
have a reflectivity on the order of 0.9. First, equilibrium solutions
will be obtained for an ideal flat solar sail. Then the problem will be
revisited with a partially reflecting solar sail. Apart from reducing
the magnitude of the radiation pressure force exerted on the solar
sail, the finite absorption of the sail means that the radiation pres-
sure force vector is no longer directed normal to the sail surface.
Because of this effect, it will be shown that the volume of space
available for artificial Lagrange points is extremely sensitive to the
solar sail reflectivity. These artificial Lagrange points are of interest
for a number of mission applications3~>

II. Equilibrium Solutions for an Ideal Flat Solar Sail

First equilibrium solutions for an idealized, perfectly reflecting
flat solar sail will be generated. We will not consider compound
solar sails such as the solar photon thruster concept of Forward.®
The ideal sail will be considered in a frame of reference corotat-
ing with two primary masses m; (Sun) and m, (Earth or another
planet) at constant angular velocity w, as shown in Fig. 1. The sail
attitudeis defined by a unit vector n normal to the sail surface, fixed
in the rotating frame of reference. In addition, the ratio of the so-
lar radiation pressure force to the solar gravitational force exerted
on the sail is defined by the sail lightness number 8. Because both
forces have an inverse square variation with solar distance, the sail
lightness number is a constant. It can be shown that the sail light-
ness number is related to the total solar sail mass per unit area by
o(gm™2)=1.53/B. The units of the problem will be chosen such
that the gravitationalconstant, the distance between the two primary
masses, and the sum of the primary masses are all taken to be unity.

The vector equation of motion for a solar sail in this rotating
frame of reference may be written in standard form as

LA )
Y w =

where the three-body gravitational potential U and the solar radia-
tion pressure accelerationa are defined by

U=-{1+y)+10 - w/nl+ @/} @

a=B[(—w/r}]¢ n)’n (2b)
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Fig. 1 Sun-Earth restricted three-body problem with a partially re-
flecting solar sail.
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Fig.2 Contours of sail lightness numbers in the x-z plane with = 1.
Contours: 1—0.02, 2—0.04, 3—0.06, and 4—0.1.

where p =m,/(m, +m,) is the mass ratio of the system and the
sail position vectors are defined asry = (x +p, y, z) andr, = [x —
1 —=w,y,zl

Equilibrium solutions are now required in the rotating frame of
reference so that the first two terms of Eq. (1) vanish. The five
classical Lagrange pointsare then defined as the solutionsto VU =0
with 7, - n=0, and so a=0. However, for 7, - n = 0 there is an
additional acceleration a that is a function of the lightness number
B and attitude n so that new artificial equilibrium solutions may be
generated. Because the vectora is oriented in direction i, taking the
vector product of n with Eq. (1) it follows that

VU xn=0=n=AVU 3)

where A is an arbitrary scalar multiplier. Using the normalization
condition |r| =1, A is identified |[VU|~' so that the required sail
attitude is defined by

n=vU/|VU| @)

The required sail lightness number may also be obtained by taking
a scalar product of Eq. (1) with n. Again requiring an equilibrium
solution it is found that

r: VU-n
B= -—
(1 —p) (7 -n)?

Because the sail lightness number and attitude can in principle
be freely chosen, the set of five classical Lagrange points will

5
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be replaced by an infinite set of artificially generated equilibrium
solutions.

The regions in which these new solutions may exist are defined
by the constraint#, - VU > 0 with a boundary surface defined by an
equality. This constraintmay be understood physically because the
solar radiation pressure acceleration vector @, and so the sail atti-
tude vector n, can never be directed sunward. The boundary surface
has two topologically disconnected surfaces S; and S, that define
the region of existence of equilibrium solutions near m,, as shown
in Fig. 2. The classical equilibrium solutions lie on either S; or S,
because they are the solutionsto VU = 0. In general, the surfaces of
constant sail lightness number approach these boundaries asymp-
totically with 8 — oo when F, - VU — 0 as is clear from Eq. (5).
Surfaces of constant sail lightness number generated from Eq. (5)
for the Earth-Sun system are shown in Fig. 2. It can be seen that
as the sail lightness number increases larger volumes of space are
accessible for artificial equilibrium points.

III. Equilibrium Solutions for a Partially
Reflecting Flat Solar Sail

A realistic flat solar sail force model that includes absorption will
now be considered. To allow a closed-form solution, the solar sail
will be assumed to have perfect specular reflectivity and no thermal
reemission but will still have an overall reflectivity n less than unity.
Then the radiation pressure acceleration will act in directionm and
may be written as the sum of components normal 7 and transverse
¢ to the sail surface’:

am = %ﬂ(u/rlz)(l +n)F - n)’n

FL1B( )1 = @ - F -0t 6)

It can be seen that the main effect of the nonperfect reflectivity of
the sail is to reduce the acceleration magnitude and to introduce an
offset in the direction of the radiation pressure acceleration. The
acceleration now acts in direction m rather than normal to the sail
surface in direction n. This offset is defined by the centerline angle
¢ with the actual radiation pressure force direction defined by the
cone angle 6, as shown in Fig. 1.

The analysis presented in the previous section will be repeated
using the sail force model defined by Eq. (6) so that the equation of
motion may now be written as

d’r dr

dt2+2w><dt+VU—am @)
For an equilibrium solution the first two terms of Eq. (7) will again
vanish so that the sail attitude must be chosen as

m=VU/|VU| ®)
The unit vector m can now be defined by the cone angle 6 between
the radial direction 7, and m as
r,x VU
tanf = M )
r - vU

In addition, using Eq. (6) the centerline angle can be obtained from
the ratio of the transverse and normal accelerationsas

tang = [(1 —n)/(1 + n)]tana (10)

Noting that r - t =0 and taking a scalar product of Eq. (7) with the
unit vector n gives the required sail lightness number as
2_r12 VU -n

w (L+m)@E-n)?
The centerline angle may be obtained explicitly by noting that

a =0 + ¢. Then, after some reduction,Eq. (10) yields the centerline
angle directly from the cone angle as’

B = (1D

1

n 1_n2 ) 2
tang = ———— |1 — [ 1 - —— tan®6 (12)
(14 n)tané n?
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Fig.3 Contours of sail lightness numbers in the x-z plane with n = 0.9.
Contours: 1—0.02, 2—0.04, 3—0.06, and 4—0.1.

Lastly, using Eq. (11), it is found that the required sail lightness
number may be obtained in terms of the lightness number for an

ideal solar sail 8 as
2 v/ 1+tan’¢ 3

T+ (—tan6ang)?

B (13)

where 8 is defined by Eq. (5). Therefore, using Eqgs. (9), (12), and
(13), one can obtain the sail orientation and lightness number re-
quired for an equilibrium solution.

The effect of a nonideal flat solar sail is shown in Fig. 3 for a re-
flectivityof 0.9, typical of an aluminized sail film. Firstit can be seen
that the volume of space available for equilibrium solutions about
L, is significantly reduced. This is due to the centerlineangle, which
limits the directionin which the radiation pressure force vector can
be oriented. For solutions near L; the main effect of the nonideal
sail is to displace the equilibrium solutions toward Earth. This is
due to the reductionin the magnitude of the radiation pressure force
rather than the centerline angle.

IV. Conclusions

It has been shown that a partially reflecting solar sail can be used
to generate artificial Lagrange points in Sun-planet three-body sys-
tems. However, the nonperfectreflectivity of the solar sail can have
a significant effect on the volume of space in which such equilib-
rium solutions are possible. The main reason for the sensitivity of
the problem to the sail reflectivity is the centerline angle, which
limits the direction in which the radiation pressure force vector can
be oriented.
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Simple Correction Algorithm
of Scanning Horizon
Sensor Measurement
for Earth Oblateness

Jie Li*
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Introduction

HE scanning horizon sensor is widely utilized in the Earth-

pointing satellite to estimate its attitude with respect to the
local vertical, i.e., roll and pitch angles. It typically uses an infrared
detector together with a pencil beam to sense the abrupt change in
the infrared radiation intensity as the beam sweeps from cold space
across the horizon. The beam scans the horizon either by using an
internal mechanism (such as an oscillating mirror, a motor-driven
rotatingreflective or refractive optic, etc.) or by mounting the sensor
on a bias momentum wheel. Although the scan mechanisms are
different, the operating principle of the scanning horizon sensors
can be generally described as follows: The field of view (FOV) of
the infrared detectordiverts from the spin axis at a specific angle and
traces out a cone (or part of a cone) as the sensor scans. The rising
pulse and the falling pulse are generated as the Earth’s horizon is
encountered going from cold space, across the Earth, and then back
into cold space. Given the fixed sensorreference, the phase angles of
the horizon crossing points, which define the geometric intersection
of the scan cone with the Earth, can be measured from the timing of
the pulses, and the roll and pitch angles of the satellite are estimated.
Becausethe Earthis notan exactsphere, butapproximatelyan oblate
spheroid relative to the polar axis, the Earth oblateness must be
corrected in the attitude estimation, or an attitude error will remain.
Several authors (e.g., Ref. 1 and the references therein) have studied
the impact of the Earth oblateness on the attitude errors, but most
of results have been scattered in the open literature and internal
technical documents.

In this Note a simple algorithm is presented to correct the scan-
ning horizon sensor measurement for the Earth oblateness in the
satellite attitude estimation. Compared with the method describedin
Ref. 2, the problem is transferred from solving a three-dimensional
vector equation of the horizon crossing vector to solving a scalar
equation of the phase angle of the horizon crossing point, and the
algorithm is simplified. Considering that the flattening coefficient
of the oblate Earth is small, a first-order correction algorithmis also
derived, which achievesrelatively high accuracy with much simpler
computation.

Reference Frames

Define several reference frames as follow: 1) the geocentric-
equatorial inertial frame O; — X;Y;Z;, where O, is the center of
the Earth, X; pointsin the vernal equinox direction, Z; points to the
North Pole, and Y; completes the right-handed triad; 2) the satel-
lite body frame Op — XY pZg, where Op is the mass center of the
satellite, and X5, Y3, and Z 3 are the body-fixed roll, pitch, and yaw
axes, respectively;3) the horizonsensorframe O — XsYsZs, where
X is opposite to the sensor spin axis, Z is orthogonal to the spin
axis, the fixed sensor reference is in the plane Op — Zs X, and Y
completes the right-handedtriad; and 4) the auxiliary measurement
frame Op — X4 Y4Z 4, which is defined by the sensor spin axis and
the satellite position vector r pointing from O; to Op as X, = Xy,
Yi= (X4 xr%)/|Xs x1r°|,and Zy =X, x Y4, where r° is the unit
vectorof r. Figure 1 illustrates the geometry of the reference frames.
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